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Abstract 
Nowadays, the thin film deposition process is essential in the semiconductor 

fabrication process and used extensively in many applications. Progress in each of these 
areas depends upon the ability to selectively and controllably deposit thin films. This 
paper proposes a design framework and implementation of the simulation of thin film 
deposition processes. This presented work focuses on the deposition processes in two-
dimensional geometries and the simulation is considered in the context of neutral flow 
Direct Simulation Monte Carlo (DSMC) simulations for semiconductor fabrication. 
Parallel computing is employed to improve the performance optimization of the system. 
This paper describes the simulation method and algorithms that are used to implement the 
simulation on a parallel system and presents the results of thin film deposition simulation. 
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Introduction 
The thin film technology is currently used extensively in many applications including 

microelectronics, optics, magnetic, corrosion resistant coatings, and micro-mechanics.  The 
technology also plays an important role in semiconductor fabrication industries.  The goal of the 
deposition process is to develop an ability to selectively and controllably deposit thin films on silicon 
wafers.  This paper presents the design and the development of a parallel computational tool for 
deposition simulation.  The tool allows the scientists to optimize the deposition process as well as to 
predict the optimal sticking coefficients that are used to control the uniformity and surface growth, for 
arbitrary input conditions.  In order to study the process, several inputs such as, the type of gas, reactor 
size, and substrate size, can be parameterized.  

Our work focuses on the deposition processes in two-dimensional geometries.  The simulation 
tool is developed based on the neutral flow Direct Simulation Monte Carlo (DSMC).  As sited in 
previous literatures, DSMC has a high computational cost when applies to a large substrate size.  We 
thus, employ the parallel and distributed programming technique in order to keep the computational 
cost within an acceptable limit.  The tool is designed to be executed in a grid environment where a 
high computational power is readily available.  Our parallel implementation utilizes the message 
passing technique as a communication paradigm. The problem is partitioned using the domain 
decomposition method.  The simulation domain is divided into several cell-grids and each grid is 
assigned to a separate processor.  Particles transport and collision are computed independently in each 
processor.  The inter-processor communications only occur when particles move out of the cell-grid 
bound. 

When the steady state is reached, we collect the output data from the simulation, i.e., density, 
velocity and temperature of gas molecules.  These values are then used to calculate the sticking 
coefficient based on the Langmuir model.  The model describes ideal chemical mechanical absorption 
and is used to study the surface growth.  Our simulation produces the result in the previously 
published theoretical ranges.  Finally, the parallel performance and scalability are observed.  From our 
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experiment, the average processing time decreased as more computing nodes are added to the 
computation.  We can thus conclude that our simulation tool is fast, efficient, and accurate.  

Related Research 
The DSMC method has been first developed by Bird (1976).  In recent years, there have been 

several review articles about the DSMC method.  In this section, we discuss the related works in 
particle simulation based on DSMC and the parallel computing techniques that were previously used 
to optimize the performance. The research by Robinson and Harvey (1995) focused on the 
development of an effective parallel implementation of the DSMC method. The designed algorithm 
emphasized rarefied flows problem solving and addressed the effectiveness of the domain 
decomposition technique for DSMC method. The results concluded that the DSMC is perfectly suited 
to the data domain decomposition because the algorithm allowed each sub-domain to operate 
independently from each other. To enhance the DSMC method for use with a very large system, 
Dietrich and Boyd (1996) proposed the system called, ‘‘MONACO’”. MONACO targeted to build a 
high performance tool using object-oriented design.  DSMC was modified and the implementation was 
rather complicated. DDAC software that was used to track molecules proposed by LeBeau (1999) 
provided an efficient implementation for the unstructured triangular grid and thus supported the 
irregular surface geometry.  Although flexible, the software has high computational cost. In our work, 
we aim to provide a simple and fast, DSMC-based simulation tool that can be adapted to a series of 
simple applications. The experimental domain was thus assumed to be a uniform rectangular grid, 
which was often the case for many molecular dynamics simulation.  After extensive reviews of the 
previous works, we have decided to adapt the concept presented by Robinson and Harvey (1995) for 
the thin film deposition process.  The physical domain decomposition technique was utilized.  
Molecules tracking of rarefied flows were modeled.  Our goal is to provide a parallel simulation tool 
that can run on an inexpensive cluster of PCs.  The details of our parallel simulation algorithm and the 
experimental results are presented in the following sections. 

Materials and methods 
In this section, we describe a design framework and a sequential implementation of the thin film 

deposition algorithm based on the DSMC method (Bird, 1976; Bird, 1994). The proposed algorithm 
aims at simulating particles transport and collision as well as calculating the sticking coefficient from 
the simulation data based on the Langmuir model (Kolasinski, 2002; Masel, 1996; McCash, 2001). In 
the last, we present the parallel computing approach that is used to improve the performance 
optimization of the system. 

Design framework 
Our basic design framework of the thin film deposition system involves the particles simulation 

and the calculation of the sticking coefficient. The particle simulation was built based on the DSMC 
method. DSMC decoupled the continuous process of particles movement into two consecutive phases: 
transport and collision at each time step ∆t.  The Langmuir model was then applied to find the sticking 
coefficient based on the output obtained from DSMC. The design framework is divided into 8 major 
phases: system initial phase, particles injection phase, particles movement phase, particles sorting and 
indexing phase, particles collision phase, macroscopic sampling phase, average output data phase and 
sticking coefficient calculation phase. 

System Initial Phase 
The simulation domain model that illustrated in Figure 1 is mapped from physical domain space 

and divided into several cells which cell size should be smaller than the mean free path (λ) and is 
given by; 



Banharnsakun et al., ASIMMOD2007, Chiang Mai, Thailand 

 61

 

λ = 
n22
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where  n = the number density of any gas. 

σ = collision cross section. 

 
Figure 1:  The simulation domain model in 2 dimensional. 

The cells that are adjacent to the substrate are called a “substrate cell”.  The simulation input 
consists of a domain simulation’s width and height, a substrate size, a number of particles released at 
the top wall, a number of time steps, a sampling time step, characteristics of simulated gas, and flow 
state conditions.  These inputs can be parameterized in a simulation configuration file. 

Particles injection phase 
The particles are injected at the top wall (inflow boundary).  An initial velocity of each particle 

is assigned following the Maxwell-Boltzmann distribution (Garcia, 2000) that can be written as 
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where 

k = Boltzmann constant (1.3806 x 10-23 J/K). 

T = gas temperature (K). 

m = molecular mass (kg) 

Particles movement phase 
In this phase, particles movement may or may not collide with a wall.  A particle that flows 

downward without interactions with any boundary, is simulated using the following equation; 

Rj = Ri + crms ∆t __________________________ [3] 

where 

Ri = an initial coordinate of a particle before moving. 

Rj = a new coordinate of a particle after moving. 

crms = a root mean square particle speed. 

∆t = a time step. 

Figure 2 shows how to simulate a particle in a case where boundary interaction is present.  Each 
boundary (top, left, and right wall) is called, a Specular surface.  When a particle strikes a Specular 
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surface, the time interval from an initial location, Ri, to the point of impact, Rw, can be determined by 
tracing a straight-line trajectory.  The time interval can be calculated as shown in equation 4. 

 
Figure 2:  Particle interactions with specular boundary 

 

∆tw = (Rw-Ri)/crms __________________________ [4] 

After a particle strikes a surface, it bounces off in a reversed direction with the same velocity it 
travels before the collision.  The bouncing time interval is ∆t - ∆tw.  The new position of a particle can 
be calculated using equation 5. 

Rj = Rw + crms(∆t - ∆tw) __________________________ [5] 

where 

Rw = a point of impact. 
∆tw = the time of flight from the particle’s initial position to the point of impact. 

Particles that hit the outflow surface (bottom of a reactor) are simply removed from the 
simulation.  These particles are re-initiated with a new coordinate at the top wall with a newly defined 
velocity following equation 2.  Also, a cell grid block that each particle falls within is identified 
throughout the simulation using particles coordinates (x, y). 

Particles sorting and indexing phase 
This phase is the phase that prepares the sorted lists that used to select random particles from 

cell for calculates particle collision in next phase. This phase contains 3 steps to process the sorting 
and indexing. 

1. Count the number of particles in each cell. 
2. Build the indexed list by calculating a cumulative sum of the number of particles in each 

cell. 
3. Build cross-reference list. 

Particles collision phase 
In this phase, we use the particle sorted and indexed array that obtain from previous phase to 

evaluate particle collision. Statistical techniques are used to determine the correct number of collisions 
in time proportional to the number of particles in the cell. The acceptance-rejection scheme (Garcia, 
2000) is used to select collision pairs. 

Macroscopic sampling phase 
When the sampling time is reached, each substrate cell is evaluated.  First, we count the number 

of particles in each cell and only the substrate cells that contain at least 20 particles are sampled.  
Macroscopic conditions are then collected from each substrate cells.  The collected values include 
density, velocity in x- and y-coordinate, and root mean square speed.  These values will be used to 
calculate the average data in the next phase. 
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Results averaging phase 
After all sampled macroscopic data from each sampling period are collected, average values are 

calculated for each cell.  The average values include density, velocity, temperature, pressure, and 
incident molecular flux. 

Sticking coefficient calculation phase 
Finally, in the last phase, we use the outputs from the particle simulation to calculate the 

coverage and the average of sticking coefficient under various pressures, densities and substrate 
temperatures based on Langmuir model. 

The Parallel System 
The particles simulation process is highly compute-intensive and requires a large memory 

usage. In order to keep the execution cost within an acceptable limit, an efficient parallel algorithm 
was designed for DSMC.  In the algorithm, tasks are divided to a set of sub-tasks and each sub-task is 
worked on concurrently by different processors. The Manager-Worker model is employed in our 
parallel implementation. The model consists of one manager and multiple workers. The manager is 
responsible for initialization, load balancing, decomposing the data distributing the sub-tasks to 
workers, collecting and displaying the simulation results. The workers are actual computing nodes 
where the sub-tasks are being worked on. Once finished, the partial results will be returned to the 
manager. Inter-processor communications occur only between the manager and the workers based on 
the message-passing interface (MPI). The parallel DSMC algorithm model can be shown in Figure 3. 

 

 
Figure 3:  The Parallel DSMC algorithm flowchart 

Results 
There are several conditions that can effect the surface reaction directly, where the most 

common ones are density, pressure, and substrate temperature. We have experimented with these 
conditions and collected data on the accuracy of similarity measurement. Figures 4 and 5 represent our 
experimental data and results with different conditions. The parallel scalability results are also 
included in Figure 6. 
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Figure 4:  Coverage and exposure under various pressure conditions (left) 

Coverage and exposure in various substrate temperatures (right) 
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Figure 5:  The change of sticking coefficient with CF2 density (left) 

The change in sticking coefficient with coverage (right) 
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Figure 6:  Scalability plot (amount of particles = 104 particles) (left) 

Scalability plot (amount of particles = 106 particles) (right) 

 

In our experiments we tested the system under several initial conditions: the growth of coverage 
with exposure in various pressure conditions, the change in sticking coefficient with coverage, the 
effect of substrate temperature on the coverage, and the sticking coefficient in various CF2 densities. 
The system was able to accurately produce results which were consistent with the work presented in 
previous literature in all conditions. 

Moreover, in order to keep the execution cost within an acceptable limit, we employed the 
parallel computing concept.  An efficient parallel algorithm was designed for DSMC to run on a 
cluster of PCs and the implementation was done based on the message-passing interface (MPI).  The 
static load balancing was also applied to eliminate the possibility of system imbalance. We analyzed 
the parallel scalability and discovered that, as more computers were added to the system, the average 
processing time decreased almost proportionally. We can conclude that with a large problem size, our 
parallel algorithm scale almost linearly. 

Conclusions 
This paper described a design framework and a parallel implementation of our thin film 

deposition system.  The system involves the particles simulation and the calculation of the sticking 
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coefficient. The particles simulation was built based on the DSMC method, where transport and 
collision of particles at each time step (∆t) were modeled. The Langmuir model was then applied to 
find the sticking coefficient in order to monitor the film growth on the substrate’s surface.  In this 
work, we developed a parallel simulation tool that could be used to aid engineers in the optimization 
of the deposition process and the prediction of the surface growth for arbitrary input conditions. With 
these initial promising results, we believe that some further research will provide engineers with an 
efficient simulation tool for semiconductor fabrication industries in Thailand.  
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